Cystic Fibrosis: How do CFTR mutations cause cystic fibrosis?
نویسنده
چکیده
Two major discoveries have transformed our understanding of cystic fibrosis, a genetic disease in which thick secretions accumulate in airways, digestive organs and sperm duct. The first was that cystic fibrosis involves a basic defect in epithelial ion transport [1], which is manifested primarily as the loss of chloride conductance [2]. The connection between the loss of epithelial chloride conductance and many of the symptoms of cystic fibrosis is explained by a well-established model in which fluid secretion is driven by chloride secretion, the last step of which occurs through a chloride channel [3]. Loss of conductance through the chloride channel reduces fluid secretion, leading to airway obstruction by condensed macromolecules; salt absorption is also compromised in some tissues. The other great advance was the cloning of the cystic fibrosis gene [4], which brought the enormous power of molecular biology to cystic fibrosis researchers. This led to the demonstration that the cystic fibrosis gene product is a chloride channel [5], validating earlier electrophysiological analyses and leading to the hypothesis that the fundamental physiological defect in cystic fibrosis is loss of the chloride conductance mediated by the cystic fibrosis gene product (Fig. 1).
منابع مشابه
CFTR Mutations in Congenital Absence of Vas Deferens
A qualitative diagnosis of infertility requires attention to female and male physical abnormalities, endocrine anomalies and genetic conditions that interfere with reproduction. Many genes are likely to be involved in the complex process of reproduction. Cystic fibrosis (CF) incidence varies in different White people populations (a higher incidence of CF is observed in northern–western European...
متن کاملAnalysis of CFTR Gene Mutations in Children with Cystic Fibrosis, First Report from North-East of Iran
Objective(s): More than 1500 registered mutations in cystic fibrosis transmembrane regulator (CFTR) gene are responsible for dysfunction of an ion channel protein and a wide spectrum of clinical manifestations in patients with cystic fibrosis (CF). This study was performed to investigate the frequency of a number of well-known CFTR mutations in North Eastern Iranian CF patients. Material and...
متن کاملNovel CFTR Mutations in Two Iranian Families with Severe Cystic Fibrosis
Background: Cystic fibrosis (CF) is a common autosomal recessive disorder that affects many body systems and is produced by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. CF is also the most frequently inherited disorder in the West. The aim of this study was to detect the mutations in the CFTR gene in two Iranian families with CF. Methods: After DNA extractio...
متن کاملPrevalence of Cystic Fibrosis Trans-membrane Conductance Regulator Gene common mutations in children with cystic fibrosis in Isfahan, Iran
Background: Cystic fibrosis (CF) is the most common lethal genetic disorder of Cystic Fibrosis Trans-membrane Conductance (CFTR) Regulator gene mutations. We aimed to investigate common mutations in CF patients and to assess its possible relationship with clinical presentations. Materials and Methods: This cross sectional study was conducted on 36 CF patients who were referred to a tertiary ped...
متن کاملMutation and Rare Polymorphisms Insight in Exons 7 and 20 of CFTR Gene in Non-Caucasian Cystic Fibrosis Patients
Cystic fibrosis (CF) is the most common severe autosomal recessive disorder caused by a wide spectrum of mutations in the gene encoding for the cystic fibrosis transmembrane conductance regulator (CFTR) protein. The frequencies, types and distributions of mutations vary widely between different populations and ethnic groups. The aim of this study was to perform a comprehensive analysis of the C...
متن کاملCystic fibrosis from genotype to phenotype: review article
Cystic fibrosis (CF) is the most common autosomal recessive genetic disease, which is caused by defection in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene. CFTR gene codes chloride channels to modulate the homeostasis of epithelial environments. Defective CFTR affects various organs such as the lungs, pancreas, intestine, liver and skin; however, lung impairment is the mai...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current Biology
دوره 5 شماره
صفحات -
تاریخ انتشار 1995